Show simple item record

dc.contributor.advisorAlexander H. Slocum.en_US
dc.contributor.authorAwtar, Shorya, 1977-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2005-06-02T19:17:15Z
dc.date.available2005-06-02T19:17:15Z
dc.date.copyright2003en_US
dc.date.issued2004en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/17945
dc.descriptionThesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, February 2004.en_US
dc.descriptionIncludes bibliographical references (p. 193-198).en_US
dc.description.abstractThis thesis presents a family of XY flexure mechanisms with large ranges of motion, first-order decoupled degrees of freedom, and small parasitic error motions. Synthesis is based on an systematic and symmetric layout of constraints that are realized by means of common flexure building blocks. An analytical formulation incorporating geometric non-linearities is used in deriving the characteristics of these flexure building blocks. Of concern are issues related to qualification and quantification of undesirable motions, mobility, stiffness variation within the range of motion, determination of center of stiffness, and sensitivity to manufacturing and assembly tolerances. Based on the properties of the building blocks, the performances characteristics of the resulting XY flexure mechanisms are discussed and the influence of symmetry in reducing error motions is analytically illustrated. To verify the design theory, a 300mm x 300mm prototype stage was fabricated, assembled and tested at the National Institute of Standards and Technology (NIST). Measurements using laser interferometry, autocollimation and capacitance gauges indicate levels of performance much better than the capabilities of the current state of the art of precision flexure stages. The prototype flexure stage has a 5mm x 5mm range of motion, with cross-axis errors of the order of one part in one thousand, and motion stage yaw errors of the order of a few arc seconds.en_US
dc.description.statementofresponsibilityby Shorya Awtar.en_US
dc.format.extent198 p.en_US
dc.format.extent12241163 bytes
dc.format.extent12240970 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectMechanical Engineering.en_US
dc.titleSynthesis and analysis of parallel Kinematic XY flexure mechanismsen_US
dc.typeThesisen_US
dc.description.degreeSc.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc56836505en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record