MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An HMM-based boundary-flexible model of human haplotype variation

Author(s)
Sheffi, Jonathan, 1981-
Thumbnail
DownloadFull printable version (4.012Mb)
Alternative title
Description of haplotypes and their ancestry structure from SNP data
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Mark J. Daly and David M. Altshuler.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The construction of a meaningful and detailed description of haplotype variation holds the promise for more powerful genetic association studies. The segmentation of the human genome into blocks of limited haplotype diversity has been successfully employed by models that describe common variation. Some computational models of haplotype variation are flawed, however: they arbitrarily sever all haplotypes at block boundaries and assume that block boundaries are areas of free recombination. In reality, haplotypes break up when they recombine, and many past recombination events are predicted to occur at sites of occasional recombination. Thus, the genuine unit of shared genetic variation should often cross block boundaries, or sometimes end between them. This work seeks the truer mosaic structure of human haplotypes through flexible haplotype boundaries. This thesis introduces an HMM-based boundary-flexible model, and proves that this model is superior to a blockwise description via the Minimum Description Length (MDL) criterion.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.
 
Includes bibliographical references (p. 71-77).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/17993
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.