Show simple item record

dc.contributor.advisorJin Au Kong.en_US
dc.contributor.authorWang, Weijen, 1980-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2005-06-02T19:33:09Z
dc.date.available2005-06-02T19:33:09Z
dc.date.copyright2004en_US
dc.date.issued2004en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/17995
dc.descriptionThesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.en_US
dc.descriptionIncludes bibliographical references (p. 83-86).en_US
dc.description.abstractUsing a commercially available software(CST Microwave Studio®), two kinds of simulations have been carried out on different metamaterials in the microwave regime. One is transmission and reflection of a unit cell in a waveguide, and the other is parallel plate slab farfield radiation. The S-parameters are obtained from the wave-guide simulation and are used to retrieve the effective permittivity and permeability with which we can estimate the farfield radiation using analytic method. Thus, by comparing the farfield radiation from two different methods, analytic and slab simulation, we find that the analytic method is able to indicate many major features of the slab simulation's farfield results, implying that within a certain frequency range, we can treat the metamaterial as being homogeneous. After comparing the radiation performance of different metamaterial as antenna substrates, a structure is chosen to be optimized in such a way that it improves in radiation power, beamwidth, and bandwidth.en_US
dc.description.statementofresponsibilityby Weijen Wang.en_US
dc.format.extent86 p.en_US
dc.format.extent3543689 bytes
dc.format.extent3553248 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleDirective antenna using metamaterial substratesen_US
dc.typeThesisen_US
dc.description.degreeM.Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc57195949en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record