Show simple item record

dc.contributor.advisorDavid J. Perreault.en_US
dc.contributor.authorNeugebauer, Timothy Carl, 1975-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2005-06-02T19:46:06Z
dc.date.available2005-06-02T19:46:06Z
dc.date.copyright2004en_US
dc.date.issued2004en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/18048
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.en_US
dc.descriptionIncludes bibliographical references (p. 159-163).en_US
dc.description.abstractThe objective of this thesis is to improve the high frequency performance of components and filters by better compensating the parasitic effects of practical components. The main application for this improvement is in design of low pass filters for power electronics, although some other applications will be presented. In switching power supplies the input and output filters must attenuate frequencies related to the fundamental switching frequency of the converter. The filters represent a major contribution to the weight, volume and price of the power supply. Therefore, aspects of the design of the switching power converter, especially those related to the switching frequency, are limited by the high frequency performance of the filters. The usual methods of improving the high frequency performance of the filter includes using larger, better components. Filter performance can improve by using higher quality inductors and capacitors or by adding high frequency capacitors in parallel with the filter capacitor. Also, an additional filter stage can be added. All of these methods add significant cost to the design of the power supply. If the effect of high-frequency parasitic elements in the components can be reduced (at a low cost) the performance of the filter can be enhanced. This allows the development of filters with much better high frequency attenuation, or the reduction of filter size and cost at a constant performance level. In filtering and other applications, the ability to reduce the effect of parasitic elements will be a technique that will enable many high-frequency designs. Specifically, this thesis will present two techniques that can be used to reduce the effects of parasitic inductance and capacitance. One technique,en_US
dc.description.abstract(cont.) called inductance cancellation, is used to reduce the amount of parasitic inductance in a path of interest. The other technique, capacitance cancellation, will reduce the effect of a parasitic capacitance in an inductor. The techniques introduced here cannot be used to improve performance of passive components in all applications. These techniques, though, do provide major improvements in most filtering applications, an application in which parasitic components play an important role in the design.en_US
dc.description.statementofresponsibilityby Timothy C. Neugebauer.en_US
dc.format.extent163 p.en_US
dc.format.extent8258168 bytes
dc.format.extent8278649 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAdvanced filters and components for power applicationsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc57377139en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record