MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Sloan School of Management
  • Sloan Working Papers
  • View Item
  • DSpace@MIT Home
  • Sloan School of Management
  • Sloan Working Papers
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ON TREES AND LOGS

Author(s)
Cass, David; Pavlova, Anna
Thumbnail
Download4233-02.pdf (451.2Kb)
Metadata
Show full item record
Abstract
In this paper we critically examine the main workhorse model in asset pricing theory, the Lucas (1978) tree model (LT-Model), extended to include heterogeneous agents and multiple goods, and contrast it to the benchmark model in financial equilibrium theory, the real assets model (RA-Model). Households in the LT-Model trade goods together with claims to Lucas trees (exogenous stochastic dividend streams specified in terms of a particular good) and long-lived, zero-net-supply real bonds, and are endowed with share portfolios. The RA-Model is quite similar to the LT-Model except that the only claims traded there are zero-net-supply assets paying out in terms of commodity bundles (real assets) and households' endowments are in terms of commodity bundles as well. At the outset, one would expect the two models to deliver similar implications since the LT-Model can be transformed into a special case of the RA-Model. We demonstrate that this is simply not correct: results obtained in the context of the LT-Model can be strikingly different from those in the RA-Model. Indeed, specializing households' preferences to be additively separable (over time) as well as log-linear, we show that for a large set of initial portfolios the LT-Model -- even with potentially complete financial markets -- admits a peculiar financial equilibrium (PFE) in which there is no trade on the bond market after the initial period, while the stock market is completely degenerate, in the sense that all stocks offer exactly the same investment opportunity -- and yet, allocation is Pareto optimal. We then thoroughly investigate why the LT-Model is so much at variance with the RA-Model, and also completely characterize the properties of the set of PFE, which turn out to be the only kind of equilibria occurring in this model. We also find that when a PFE exists, either (i) it is unique, or (ii) there is a continuum of equilibria: in fact, every Pareto optimal allocation is supported as a PFE. Finally, we show that most of our results continue to hold true in the presence of various types of restrictions on transactions in financial markets. Portfolio constraints however may give rise other types of equilibria, in addition to PFE. While our analysis is carried out in the framework of the traditional two-period Arrow-Debreu-McKenzie pure exchange model with uncertainty (encompassing, in particular, many types of contingent commodities), we show that most of our results hold for the analogous continuous-time martingale model of asset pricing
Date issued
2003-01-27
URI
http://hdl.handle.net/1721.1/1809
Series/Report no.
MIT Sloan School of Management Working Paper;4233-02
Keywords
Lucas Tree Model, Equilibrium Theory, Peculiar Financial Equilibrium, Nonuniqueness of Equilibria, Portfolio Constraints

Collections
  • Sloan Working Papers

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.