MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Media Arts and Sciences
  • Media Arts and Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Media Arts and Sciences
  • Media Arts and Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Topobo : a 3-D constructive assembly system with kinetic memory

Author(s)
Raffle, Hayes Solos, 1974-
Thumbnail
DownloadFull printable version (26.38Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Architecture. Program in Media Arts and Sciences.
Advisor
Hiroshi Ishii.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We introduce Topobo, a 3-D constructive assembly system em- bedded with kinetic memory, the ability to record and playback physical motion. Unique among modeling systems is Topobo's coincident physical input and output behaviors. By snapping together a combination of Passive (static) and Active (motorized) components, people can quickly assemble dynamic biomorphic forms like animals and skeletons, animate those forms by pushing, pulling, and twisting them, and observe the system repeatedly play back those motions. For example, a dog can be constructed and then taught to gesture and walk by twisting its body and legs. The dog will then repeat those movements and walk repeatedly. Our evaluation of Topobo in classrooms with children ages 5- 13 suggests that children develop affective relationships with Topobo creations and that their experimentation with Topobo allows them to learn about movement and animal locomotion through comparisons of their creations to their own bodies. Eighth grade science students' abilities to quickly develop various types of walking robots suggests that a tangible interface can support understanding how balance, leverage and gravity affect moving structures because the interface itself responds to the forces of nature that constrain such systems.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2004.
 
Includes bibliographical references (p. 114-116).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/26920
Department
Massachusetts Institute of Technology. Dept. of Architecture. Program in Media Arts and Sciences.
Publisher
Massachusetts Institute of Technology
Keywords
Architecture. Program in Media Arts and Sciences.

Collections
  • Media Arts and Sciences - Master's degree
  • Media Arts and Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.