MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Control of oligonucleotide conformation on nanoparticle surfaces for nanoscale heat transfer study

Author(s)
Park, Sunho, 1976-
Thumbnail
DownloadFull printable version (6.597Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Kimberly Hamad-Schifferli.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Metal nanoparticles can be used as antennae covalently linked to biomolecules. External alternating magnetic field can turn on and off the biological activity of the molecules due to induction heating from the particles that changes the temperature around the molecules. Here an experimental scheme towards direct temperature probing is proposed to predict the behavior of the antenna. Oligonucleotides modified with photosensitive molecules are conjugated with gold nanoparticles and report the temperature at their positions within some nanometers' distance from the particles. However, oligos have a known tendency to stick to gold surfaces. To locate the probes at desired position, 6-mercapto-1-hexanol (MCH) is used to reduce oligonucleotides' adsorption to the surface of gold. The experimental result shows that oligos on particle's surface can be stretched radially without any reduction of coverage ratio. Optimal MCH concentration and reaction time highly depend on the concentration of MCH and the conjugates as well as reaction time and the size of the molecules.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2004.
 
Includes bibliographical references (leaves 77-82).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/27120
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.