Show simple item record

dc.contributor.advisorMartin L. Culpepper.en_US
dc.contributor.authorSzczesny, Spencer E., 1981-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2005-09-26T15:58:20Z
dc.date.available2005-09-26T15:58:20Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/27880
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionIncludes bibliographical references (leaves 146-148).en_US
dc.description.abstractThe purpose of this research was to generate the knowledge required to design compliant mechanisms that (1) attenuate undesired small-motion angular vibrations in rotational power transmission systems and (2) preserve the desired transmission of large-motion torque/angle inputs. This thesis investigates the design of vibration attenuating compliant mechanisms that are directly integrated into the load path of rotational systems. These devices enable designers to attenuate the amplitude of undesirable vibrations while simultaneously optimizing the transmission of torque inputs. The design, modeling, fabrication and experimental validation of two Compliant Vibration Attenuator (CVA) concepts will be presented. The first device, the Small Amplitude Vibration Isolator (SAVI), is a non-linear compliant device that isolates a resonating or non-resonating rotational system from vibrations by acting as a mechanical lowpass filter. The second device, the Damping Vibration Link (DVL) utilizes compliance and damping to attenuate undesired vibrations due to resonance. A linear lumped parameter model was created in Matlab® to simulate the static and dynamic characteristics of rotational power transmission systems. This model enables one to determine the dynamic characteristics of a system for a given set of inputs, thereby making it possible to (1) understand the requirements for the CVA and (2) ascertain the effect of the CVA on the system. Finite-element simulations were conducted to verify an empirical, parametric model that describes the performance of a SAVI as a function of its stiffness parameters.en_US
dc.description.abstract(cont.) Proof-of-concept prototypes were tested to verify performance predictions and to determine the practical issues related to implementation. The thesis concludes with a case study which demonstrates the effectiveness of a SAVI when integrated into the steering system of a light-duty pickup truck. The SAVI was shown to offer a 60% reduction in vibration amplitude by trading off 7 ms of delay in steering wheel-vehicle response.en_US
dc.description.statementofresponsibilityby Spencer E. Szczesny.en_US
dc.format.extent148 leavesen_US
dc.format.extent29023846 bytes
dc.format.extent30773270 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectMechanical Engineering.en_US
dc.titleDesign of compliant mechanisms for attenuation of unidirectional vibrations in rotational systemsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc61103747en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record