MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Restaurant revenue management

Author(s)
Shioda, Romy, 1977-
Thumbnail
DownloadFull printable version (2.581Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Dimitris Bertsimas.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We develop two classes of optimization models in order to maximize revenue in a restaurant, while controlling average waiting time as well as perceived fairness, that may violate the first-come-first-serve (FCFS) rule. In the first class of models, we use integer programming, stochastic programming and approximate dynamic programming methods to decide dynamically when, if at all, to seat an incoming party during the day of operation of a restaurant that does not accept reservations. In a computational study with simulated data, we show that optimization based methods enhance revenle relative to the industry practice of FCFS by 0.11% to 2.22% for low load factors, by 0.16% to 2.96% for medium load factors, and by 7.65% to 13.13% for high load factors, without increasing and occasionally decreasing waiting times compared to FCFS. The second class of models addresses reservations. We propose a two step procedure: use a stochastic gradient algorithm to decide a priori how many reservations to accept for a future time and then use approximate dynamic programming methods to decide dynamically when, if at all, to seat an incoming party during the day of operation. In a computational study involving real data from an Atlanta restaurant, the reservation model improves revenue relative to FCFS by 3.5% for low load factors and 7.3% for high load factors.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2002.
 
Includes bibliographical references (p. 59-60).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/28250
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.