MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aromatic hydrocarbon metabolism by Rhodococcus sp. I24 : computational, biochemical and transcriptional analysis

Author(s)
Parker, Jefferson A. (Jefferson Alexander), 1974-
Thumbnail
DownloadFull printable version (4.649Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Biology.
Advisor
Anthony J. Sinskey.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Rhodococcus sp. 124 is a Gram-positive soil bacterium being developed for the manufacture of (-)cis-(1S,2R)-1-aminoindan-2-ol, a key precursor in the production of the HIV-1 protease inhibitor CrixivanTM, from the aromatic hydrocarbon indene. Rhodococcus sp. 124 was grown by batch fermentation in the presence of naphthalene and indene to measure changes in gene expression and aromatic hydrocarbon metabolism with DNA microarray technology. Genes were selected for microarray analysis based on functional annotation assignments made by the Consensus Annotation by Phylogeny Anchored Sequence Alignment (CAPASA) program, a high throughput system for automated functional annotation assignment of DNA sequence similarity search results. CAPASA was validated by comparison to several methods of annotation, and the agreement to other methods ranged from 75-94%. Microarray results were analyzed by the newly described method of trigonometric deconvolution, a mathematical system for the measurement of changes in gene expression across multiple growth conditions with a minimal number of hybridizations. The combined analysis of aromatic metabolism and gene expression reveal the differential expression of multiple polycyclic aromatic hydrocarbon dioxygenases in a substrate and growth phase dependent manner.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2004.
 
Includes bibliographical references.
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/28309
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.