MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Smoothed analysis of Gaussian elimination

Author(s)
Sankar, Arvind, 1976-
Thumbnail
DownloadFull printable version (2.497Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Daniel A. Spielman.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We present a smoothed analysis of Gaussian elimination, both with partial pivoting and without pivoting. Let A be any matrix and let A be a slight random perturbation of A. We prove that it is unlikely that A has large condition number. Using this result, we prove it is unlikely that A has large growth factor under Gaussian elimination without pivoting. By combining these results, we bound the smoothed precision needed to perform Gaussian elimination without pivoting. Our results improve the average-case analysis of Gaussian elimination without pivoting performed by Yeung and Chan (SIAM J. Matrix Anal. Appl., 1997). We then extend the result on the growth factor to the case of partial pivoting, and present the first analysis of partial pivoting that gives a sub-exponential bound on the growth factor. In particular, we show that if the random perturbation is Gaussian with variance [sigma]², then the growth factor is bounded by (n/[sigma])[to the power of] (o log n) with very high probability.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2004.
 
Includes bibliographical references (p. 59-60).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/28311
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.