MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Local complex singularity exponents for isolated singularities

Author(s)
Hou, Zuoliang, 1977-
Thumbnail
DownloadFull printable version (2.208Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Gang Tian.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, I studied the stability of local complex'singularity exponents (lcse) for holomorphic functions whose zero sets have only isolated singularities. For a given holomorphic function f defined on a neighborhood of the origin in C[to the power of]n, the lcse c[sub]0(f) is defined as the supremum of all positive real number [lambda] for which 1/[magnitude of]f[to the power of][2 lambda] is integrable on some neighborhood of the origin. It has been conjectured that c[sub]0(f) should not decrease if f is deformed small enough. Using J. Mather and S.S.T. Yau's result on the classification of isolated hypersurface singularities, together with a well known result on the stability of c[sub]0(f) when f is deformed in a finite dimension base space, I proved that if the zero set of f has only isolated singularity at the origin, then c[sub]0(g) >[or equal to][sub]0(f) for g close enough to f with respect to the C⁰ norm over a neighborhood of the origin, thus gave a partial solution to the conjecture. Using the stability results, I also computed the holomorphic invariant α(M) for some special Fano manifold M.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2004.
 
Includes bibliographical references (p. 59-61).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/28312
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.