MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of ultra-narrow ferromagnetic domain walls

Author(s)
Jenkins, Catherine A. (Catherine Ann), 1981-
Thumbnail
DownloadFull printable version (2.307Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
David I. Paul and Samuel M. Allen.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A mathematical analysis of ultra-narrow ferromagnetic domain walls was undertaken, with graphical plots coded in the programming language TrueBASIC. An intrinsic inter-atomic potential stemming from the breakdown of the continuum approximation of matter is calculated and its contribution to the coercive force of hard materials is depicted. The interaction of a very narrow domain wall with a similarly narrow planar defect is analyzed. Time-dependent motion of such walls is modeled for various external driving forces and in different combinations of material parameters. This work was completed in parallel with a study of narrow crystallographic magnetic discontinuities known as twin boundaries, and was designed to gain an intuition into the control of high-anisotropy magnetic recording devices. The equations developed here would be particularly useful as a basis for approaching the calculations of the stability of high-density storage media.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2004.
 
Includes bibliographical references (p. 35).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/28352
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.