MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fast offset compensation for a 10Gbps limit amplifier

Author(s)
Crain, Ethan A. (Ethan Alan), 1972-
Thumbnail
DownloadFull printable version (8.139Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Michael H. Perrott.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A novel offset voltage compensation method is presented that significantly modifies the existing tradeoff between control loop bandwidth, and therefore total compensation time, and total output jitter. The proposed system achieves comparable output jitter performance to traditional approaches while significantly reducing the total compensation time by nearly three orders of magnitude. Traditional offset compensation methods are based on simple offset measurement techniques that generally rely on passive compensation blocks and exhibit a direct inverse relationship between total compensation time and resulting output jitter. Therefore, current high-speed data-link systems suffer from extremely long offset compensation loop settling times in order to satisfy the strict protocol jitter specifications. In the proposed system, the new CMOS peak detector design is the enabling component that allows us break this relationship and achieve extremely fast settling behavior while preventing data dependence of the control signal. Simulated results show that the implemented system can achieve output jitter performance similar to existing methods while dramatically improving the compensation time. Specifically, the proposed system can achieve less than 2pS of peak-to-peak jitter, or less than 700fS of RMS jitter, while reducing the total compensation time from roughly 500[mu]S to less than 1[mu]S. The system was implemented in National Semiconductor's CMOS9 0.18[mu]m CMOS process. Packaged parts will be tested to verify agreement with simulated performance.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.
 
Includes bibliographical references (p. 117-118).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/28380
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.