dc.contributor.advisor | Vladimir BuloviÄ. | en_US |
dc.contributor.author | Ho, John C., 1980- | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2005-09-26T20:13:30Z | |
dc.date.available | 2005-09-26T20:13:30Z | |
dc.date.copyright | 2004 | en_US |
dc.date.issued | 2004 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/28396 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004. | en_US |
dc.description | Includes bibliographical references (p. 54-55). | en_US |
dc.description.abstract | Over the last decade Organic Light Emitting Device (OLED) technology has matured, progressing to the point where state-of-the-art OLEDs can demonstrate external extraction efficiencies that surpass those of fluorescent lights. Additionally, OLEDs have the benefits over conventional display and lighting technologies of large viewing angles and mechanical flexibility. However, in order to become a commercially viable, widely adopted technology, OLEDs must not only match the long-term stability of competing technologies, but must demonstrate a distinct advantage in efficiency. This thesis presents various strategies for fabricating nanopatterned structures that can be integrated into OLEDs with the aim of improving the external extraction efficiency. Soft nanolithography, colloidal deposition, and preparation of metallic nanoparticle films are among the fabrication techniques investigated for potential applications in enhancing OLED performance. | en_US |
dc.description.statementofresponsibility | by John C. Ho. | en_US |
dc.format.extent | 55 p. | en_US |
dc.format.extent | 3443944 bytes | |
dc.format.extent | 3448666 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en_US | |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Improving the external extraction efficiency of organic light emitting devices | en_US |
dc.title.alternative | Improving the external extraction efficiency of OLED | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 56978620 | en_US |