MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Building a trajectory syntax through language evolution

Author(s)
Kim, Anthony Hahn, 1980-
Thumbnail
DownloadFull printable version (3.210Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Patrick H. Winston.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
If we are to understand the innately human ability to solve complex problems, we must first understand the cognitive processes that allow us to combine different kinds of knowledge, to learn new things and to communicate with other people. I have built a computer simulation, based on the work of Simon Kirby, in which I show that a population of induction agents, capable of perceiving their environment and producing utterances, can develop a compositional grammar to describe the world they observe with no prior linguistic knowledge. This system expands the semantic domain proposed by Kirby which expressed meanings such as "John knows Pete" to a physical world of trajectories such as "The boy ran from the tree to the pole". In this new simulation, I demonstrate that a compositional syntax still develops if the level of semantic complexity increases over time. I then argue that using multiple representations decreases the time necessary for a compositional grammar to emerge.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.
 
Includes bibliographical references (leaves 81-82).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/28433
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.