MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A framework for low-complexity iterative interference cancellation in communication systems

Author(s)
Chan, Albert M. (Albert Michael), 1975-
Thumbnail
DownloadFull printable version (9.437Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Gregory W. Wornell.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Communication over interference channels poses challenges not present for the more traditional additive white Gaussian noise (AWGN) channels. In order to approach the information limits of an interference channel, interference mitigation techniques need to be integrated with channel coding and decoding techniques. This thesis develops such practical schemes when the transmitter has no knowledge of the channel. The interference channel model we use is described by r = Hx + w, where r is the received vector, H is an interference matrix, x is the transmitted vector of data symbols chosen from a finite set, and w is a noise vector. The objective at the receiver is to detect the most likely vector x that was transmitted based on knowledge of r, H, and the statistics of w. Communication contexts in which this general integer programming problem appears include the equalization of intersymbol interference (ISI) channels, the cancellation of multiple-access interference (MAI) in code-division multiple-access (CDMA) systems, and the decoding of multiple-input multiple-output (MIMO) systems in fading environments. We begin by introducing mode-interleaved precoding, a transmitter preceding technique that conditions an interference channel so that the pairwise error probability of any two transmit vectors becomes asymptotically equal to the pairwise error probability of the same vectors over an AWGN channel at the same signal-to-noise ratio (SNR). While mode-interleaved precoding dramatically increases the complexity of exact ML detection, we develop iterated-decision detection to mitigate this complexity problem. Iterated-decision detectors use optimized multipass algorithms to successively cancel interference from r and generate symbol
 
(cont.) decisions whose reliability increases monotonically with each iteration. When used in uncoded systems with mode-interleaved preceding, iterated-decision detectors asyrmptotically achieve the performance of ML detection (and thus the interference-free lower bound) with considerably lower complexity. We interpret these detectors as low-complexity approximations to message-passing algorithms. The integration of iterated-decision detectors into communication systems with coding is also developed to approach information rates close to theoretical limits. We present joint detection and decoding algorithms based on the iterated-decision detector with mode-interleaved precoding, and also develop analytic tools to predict the behavior of such systems. We discuss the use of binary codes for channels that support low information rates, and multilevel codes and lattice codes for channels that support higher information rates.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.
 
Includes bibliographical references (p. 211-215).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/28537
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.