MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Antenna design for ultra wideband radio

Author(s)
Powell, Johnna, 1980-
Thumbnail
DownloadFull printable version (13.85Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Anantha P. Chandrakasan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The recent allocation of the 3.1-10.6 GHz spectrum by the Federal Communications Commission (FCC) for Ultra Wideband (UWB) radio applications has presented a myriad of exciting opportunities and challenges for design in the communications arena, including antenna design. Ultra Wideband Radio requires operating bandwidths up to greater than 100% of the center frequency. Successful transmission and reception of an Ultra Wideband pulse that occupies the entire 3.1-10.6 GHz spectrum require an antenna that has linear phase, low dispersion and VSWR [< or =] 2 throughout the entire band. Linear phase and low dispersion ensure low values of group delay, which is imperative for transmitting and receiving a pulse with minimal distortion. VSWR [< or =] 2 is required for proper impedance matching throughout the band, ensuring at least 90% total power radiation. Compatibility with an integrated circuit also requires an unobtrusive, electrically small design. The focus of this thesis is to develop an antenna for the UWB 3.1-10.6 GHz band that achieves a physically compact, planar profile, sufficient impedance bandwidth, high radiation pattern and near omnidirectional radiation pattern.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, June 2004.
 
"May 2004."
 
Includes bibliographical references (p. 108-109).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/28542
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.