Show simple item record

dc.contributor.advisorGregory Wornell and Uri Erez.en_US
dc.contributor.authorKhisti, Ashish, 1979-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2005-09-27T16:55:56Z
dc.date.available2005-09-27T16:55:56Z
dc.date.copyright2004en_US
dc.date.issued2004en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/28546
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.en_US
dc.descriptionIncludes bibliographical references (leaves 74-77).en_US
dc.description.abstractWe study some fundamental limits of multicasting in wireless systems and propose practical architectures that perform close to these limits. In Chapter 2, we study the scenario in which one transmitter with multiple antennas distributes a common message to a large number of users. For a system with a fixed number (L) of transmit antennas, we show that, as the number of users (K) becomes large, the rate of the worst user decreases as O(K-(1/L)). Thus having multiple antennas provides significant gains in the performance of multicasting system with slow fading. We propose a robust architecture for multicasting over block fading channels, using rateless erasure codes at the application layer. This architecture provides new insights into the cross layer interaction between the physical layer and the application layer. For systems with rich time diversity, we observe that it is better to exploit the time diversity using erasure codes at the application layer rather than be conservative and aim for high reliability at the physical layer. It is known that the spatial diversity gains are not significantly high in systems with rich time diversity. We take a step further and show that to realize these marginal gains one has to operate very close to the optimal operating point. Next, we study the problem of multicasting to multiple groups with a multiple antenna transmitter. The solution to this problem motivates us to study a multiuser generalization of the dirty paper coding problem. This generalization is interesting in its own right and is studied in detail in Chapter 3. The scenario we study is that of one sender and many receivers, all interested in a common message. There is additive interference on the channel of each receiver, which is known only to the sender.en_US
dc.description.abstract(cont.) The sender has to encode the message in such the way that it is simultaneously 'good' to all the receivers. This scenario is a non-trivial generalization of the dirty paper coding result, since it requires that the sender deal with multiple interferences simultaneously. We prove a capacity theorem for the special case of two user binary channel and derive achievable rates for many other channel modes including the Gaussian channel and the memory with defects model. Our results are rather pessimistic since the value of side information diminishes as the number of users increase.en_US
dc.description.statementofresponsibilityby Ashish Khisti.en_US
dc.format.extent77 leavesen_US
dc.format.extent3918895 bytes
dc.format.extent3926917 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleCoding techniques for multicastingen_US
dc.title.alternativeCoding techniques for multicasting in wireless networksen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc57400886en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record