MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Magnetic-field-induced antiferromagnetism in the Kondo lattice

Author(s)
Beach, Kevin S. D. (Kevin Stuart David), 1975-
Thumbnail
DownloadFull printable version (5.469Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Patrick A. Lee.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The half-filled Kondo lattice model, augmented by a Zeeman term, serves as a useful model of a Kondo insulator in an applied magnetic field. A variational mean field analysis of this system on a square lattice, backed up by quantum Monte Carlo calculations, reveals an interesting separation of magnetic field scales. For Zeeman energy comparable to the Kondo energy, the spin gap closes and the system develops transverse staggered magnetic order. The charge gap, however, remains robust up to a higher hybridization energy scale, at which point the canted antiferromagnetism is exponentially suppressed and the system crosses over to a nearly-metallic regime. The quantum Monte Carlo simulations are performed using a determinant Monte Carlo method that has been extended to handle mixed spin and fermionic degrees of freedom. The formulation is sign-problem-free for all values of the Kondo coupling and magnetic field strength. The matrix operations are specially organized to maintain numerical stability down to arbitrarily low temperatures. Spectral data is extracted from the imaginary-time correlation functions using an improved analytic continuation technique. The weak, secondary peaks of the single-electron spectral function are resolvable, and their response to the magnetic field is carefully tracked. An unusual rearrangement of spectral weight is found at the onset of the antiferromagnetism.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2004.
 
Includes bibliographical references (p. 109-111).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/28645
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.