MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Studies on X chromosome inactivation and the X-linked disease Rett syndrome

Author(s)
Luikenhuis, Sandra, 1972-
Thumbnail
DownloadFull printable version (7.438Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Biology.
Advisor
Rudolph Jaenisch.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
(cont.) the RTT phenotype.
 
Deletion of the Xist gene results in skewed X-inactivation. To distinguish primary non-random choice from post-choice selection, we analyzed X-inactivation in early embryonic development in the presence of two different Xist deletions. We found that Xist is an important choice element, and that in the absence of an intact Xist gene, the X chromosome will never be chosen as the active X. To understand the molecular mechanisms that affect choice we analyzed the role of replication timing prior to X-inactivation. The X chromosomes replicated asynchronously before X-inactivation but analysis of cell-lines with skewed X-inactivation showed no preference for one of the two Xist alleles to replicate early, indicating that asynchronous replication timing prior to X-inactivation does not play a role in skewing of X-inactivation. Expression of the Xist is negatively regulated by its antisense gene, Tsix. In order to determine the role of transcription in Tsix function, we modulated Tsix transcription with minimal disturbance of the genomic sequence. Loss of Tsix transcription lead to non-random inactivation of the targeted chromosome, whereas induction of Tsix expression caused the targeted chromosome always to be chosen as the active X. These results for the first time establish a function for antisense transcription in the regulation of Xist expression. The X-linked disease Rett syndrome (RTT), a neurodevelopmental disorder, is caused by mutations in the MECP2 gene. We used a mouse model to test the hypothesis that RTT is exclusively caused by neuronal MeCP2 deficiency. Expression of an Mecp2 transgene in postmitotic neurons resulted in symptoms of severe motor dysfunction. Transgene expression in Mecp2 mutant mice, however, rescued
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2004.
 
Includes bibliographical references.
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/28676
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.