MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Solution-phase and automated solid-phase synthesis of high-mannose oligosaccharides : application to carbohydrate microarrays and biological studies

Author(s)
Ratner, Daniel Martin, 1977-
Thumbnail
DownloadFull printable version (11.15Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemistry.
Advisor
Peter H. Seeberger.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
(cont.) 2G12, cyanovirin-N, and a recently identified anti-HIV protein, scytovirin.
 
Glycosylation is critical to cellular function in eukaryotic systems. N-linked modification of asparagine residues within nascent proteins is involved in numerous folding and processing pathways. N-linked glycans are also a common feature of viral-associated envelope glycoproteins, including gpl20 and gp41 of the human immunodeficiency virus (HIV-1). These glycans are attractive targets for therapy and prophylaxis due to their numerous roles in HIV infectivity and immunoevasion. This thesis describes the solution-phase synthesis of a series high-mannose type glycans using a linear synthetic approach. The synthetic mannans are used to study the potent anti-HIV microbicide cyanovirin-N, a novel 11 kDa protein isolated from the cyanobacterium (blue-green algae) Nostoc ellipsosporum. These studies established the structural basis for carbohydrate-binding by cyanovirin-N, which is responsible for its HIV inactivating properties. Automated solid-phase synthesis and microfluidic reactors were employed in the development of new technologies for synthetic carbohydrate chemistry. Utilizing a carbohydrate synthesizer, the first automated solid-phase synthesis of the N-linked core pentasaccharide is detailed. In addition, the design, fabrication and application of a microreactor for optimizing the glycosylation reaction is described. Utilizing a novel tri(ethylene glycol) linker with a reactive thiol handle, the fabrication of carbohydrate microarrays is depicted. A panel of oligosaccharides was selected to represent the major structural determinants of high-mannose type glycans on a single microarray. These microarrays were used study the glycan-dependent binding interactions of four gpl20-binding proteins: the dendritic cell lectin DC-SIGN, the antibody
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2004.
 
Vita.
 
Includes bibliographical references.
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/28701
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.