MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A compact moduli space for Cohen-Macaulay curves in projective space

Author(s)
Hønsen, Morten Oskar, 1973-
Thumbnail
DownloadFull printable version (2.222Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Aise Johan de Jong.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We define a moduli functor parametrizing finite maps from a projective (locally) Cohen-Macaulay curve to a fixed projective space. The definition of the functor includes a number of technical conditions, but the most important is that the map is almost everywhere an isomorphism onto its image. The motivation for this definition comes from trying to interpolate between the Hilbert scheme and the Kontsevich mapping space. The main result of this thesis is that our functor is represented by a proper algebraic space. As an application we obtain interesting compactifications of the spaces of smooth curves in projective space. We illustrate this in the case of rational quartics, where the resulting space appears easier than the Hilbert scheme.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2004.
 
Includes bibliographical references (p. 57-59).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/28826
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.