MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chemical vapor deposition of organosilicon composite thin films for porous low-k dielectrics

Author(s)
Ross, April Denise, 1977-
Thumbnail
DownloadFull printable version (10.06Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemical Engineering.
Advisor
Karen K. Gleason.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/28846 http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Pulsed plasma enhanced chemical vapor deposition has produced organosilicon thin films with the potential use as low dielectric constant interconnect materials in microelectronic circuits. Both diethylsilane and octamethylcyclotetrasiloxane precursors were used, with oxygen and hydrogen peroxides oxidants respectively, to deposit low-k organosilicon films. FTIR, nanoindentation, ellipsometry, and dielectric constant measurements were demonstrated as a valuable film characterization tools to understand structure-property-processing fundamentals by quantifying structural bonding environments and relating those to the film properties. Nanocomposites were also produced using two novel techniques. First, crystal colloidal templates of polystyrene nanospheres were fabricated using evaporation-induced self-assembly. OSG was then deposited throughout the templates to create composite materials. Subsequently the polystyrene was removed upon thermal annealing to create highly porous OSG thin films. Second, ultrasonic atomization was used to deliver particles into a vacuum chamber during plasma-enhanced CVD of the organosilicon matrix to create composite thin films using an all-CVD technique. This process could extend CVD to applications currently only possible using wet processing techniques or multi-step processing.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2005.
 
Includes bibliographical references.
 
Date issued
2005
URI
http://dspace.mit.edu/handle/1721.1/28846
http://hdl.handle.net/1721.1/28846
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Chemical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.