MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Essays on variational inequalities and competitive supply chain models

Author(s)
Zaretsky, M. (Marina)
Thumbnail
DownloadFull printable version (5.570Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Georgia Perakis.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In the first part of the thesis we combine ideas from cutting plane and interior point methods to solve variational inequality problems efficiently. In particular, we introduce "smarter" cuts into two general methods for solving these problems. These cuts utilize second order information on the problem through the use of a gap function. We establish convergence results for both methods, as well as complexity results for one of the methods. Finally, we compare the performance of an approach that combines affine scaling and cutting plane methods with other methods for solving variational inequalities. The second part of the thesis considers a supply chain setting where several capacitated suppliers compete for orders from a single retailer in a multi-period environment. At each period the retailer places orders to the suppliers in response to the prices and capacities they announce. Our model allows the retailer to carry inventory. Furthermore, suppliers can expand their capacity at an additional cost; the retailer faces exogenous, price-dependent, stochastic demand. We analyze discrete as well as continuous time versions of the model: (i) we illustrate the existence of equilibrium policies; (ii) we characterize the structure of these policies; (iii) we consider coordination mechanisms; and (iv) we present some computational results. We also consider a modified model that uses option contracts and finally present some extensions.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2004.
 
Includes bibliographical references (p. 103-107).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/28859
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.