MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Materials Science and Engineering
  • Materials Science and Engineering - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Materials Science and Engineering
  • Materials Science and Engineering - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaporative printing of organic materials and metals and development of organic memories

Author(s)
Kang, Sung Hoon, 1974-
Thumbnail
DownloadFull printable version (5.910Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Vladimir Bulović and Francesco Stellacci.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The advantages of directed printing make it the ideal fabrication tool for the ubiquitous electronic technologies of the future. However, direct printing techniques such as ink-jet technology, are currently limited to materials that can be processed in solution. We developed a novel micro-machined print head capable of expanding the capabilities of inkjet printing to metals and molecules that are suited for evaporative deposition. Deposition of metals is particularly desirable advantage of the proposed printer. We demonstrate arbitrary organic and metal patterns by printing, with the line width modulated by controlling the micro-machined shutter. With the challenges and solutions for ambient pressure printing are also studied. Additionally, the printer can be used for organic crystal formation, and controlled doping. In the second part of the thesis we examine charge trapping and storage in organic thin film devices. We demonstrate that by controlled doping, we can engineer charge storage in active organic electronic devices. Charge trapping in organic hetero-junction structures results in two distinct phenomena that both manifest as a memory behavior. Trapped charge can (1) increase the carrier mobility in organic structures, (2) generate current during the de-trapping process. Both processes are demonstrated in practical structures.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2004.
 
Includes bibliographical references (p. 125-132).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/28880
Department
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Materials Science and Engineering - Master's degree
  • Materials Science and Engineering - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.