MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probabilistic analysis of meanline compressor rotor performance

Author(s)
Fitzgerald, Nathan Andrew, 1980-
Thumbnail
DownloadFull printable version (6.130Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Edward M. Greitzer.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis addresses variability in aerodynamic performance of a compressor rotor due to geometric variation. The performance of the rotor is computed using a meanline model that includes the effect of tip clearance blockage, calculated by assuming the tip leakage behaves like a wake in a pressure gradient and incorporating the effects of double leakage. The model is used to quantify performance variability of the rotor at design flow coefficient and near stall given typical variations in blade profile geometry, hub and casing diameters, and tip clearances. Monte Carlo simulation performed at both operating conditions shows that the coefficient of variation of pressure rise, loss coefficient, axial displacement thickness, and flow angle at the exit of the blade row is similar at high and low loading. Mean shifts are smaller at design than near stall, where the mean pressure rise and loss shift -0.4% and +0.6% from their respective nominal values. A parametric analysis using a response surface showed that near stall, tip clearance variation drives performance variation; the pressure rise and loss coefficient standard deviation drop by 26% and 20% when tip clearance variability is removed. At design, tip clearance variability is still important, but leading and trailing edge blade geometries play a larger role in driving performance variability.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2004.
 
Includes bibliographical references (p. 83-85).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/28896
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.