Show simple item record

dc.contributor.advisorTom Thorvaldsen and Steven R. Hall.en_US
dc.contributor.authorBenson, David, 1978-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.date.accessioned2005-09-27T19:03:54Z
dc.date.available2005-09-27T19:03:54Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/28919
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2005.en_US
dc.descriptionIncludes bibliographical references (p. 237-243).en_US
dc.description.abstractA pseudospectral method for solving nonlinear optimal control problems is proposed in this thesis. The method is a direct transcription that transcribes the continuous optimal control problem into a discrete nonlinear programming problem (NLP), which can be solved by well-developed algorithms. The method is based on using global polynomial approximations to the dynamic equations at a set of Gauss collocation points. The optimality conditions of the NLP have been found to be equivalent to the discretized optimality conditions of the continuous control problem, which is not true of other pseudospectral methods. This result indicates that the method can take advantage of the properties of both direct and indirect formulations, and allows for the costates to be estimated directly from the Lagrange multipliers of the NLP. The method has been shown empirically to have very fast convergence (exponential) in the states, controls, and costates, for problems with analytic solutions. This convergence rate of the proposed method is significantly faster than traditional finite difference methods, and has been demonstrated with many example problems. The initial costate estimate from the proposed method can be used to define an optimal feedback law for real time optimal control of nonlinear problems. The application and effectiveness of this approach has been demonstrated with the simulated trajectory optimization of a launch vehicle.en_US
dc.description.statementofresponsibilityby David Benson.en_US
dc.format.extent243 p.en_US
dc.format.extent9030425 bytes
dc.format.extent9060578 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectAeronautics and Astronautics.en_US
dc.titleA Gauss pseudospectral transcription for optimal controlen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc60495690en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record