MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An operator-customized wavelet-finite element approach for the adaptive solution of second-order partial differential equations on unstructured meshes

Author(s)
D'Heedene, Stefan F., 1977-
Thumbnail
DownloadFull printable version (9.872Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Kevin Amaratunga.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The Finite Element Method (FEM) is a widely popular method for the numerical solution of Partial Differential Equations (PDE), on multi-dimensional unstructured meshes. Lagrangian finite elements, which preserve C⁰ continuity with interpolating piecewise-polynomial shape functions, are a common choice for second-order PDEs. Conventional single-scale methods often have difficulty in efficiently capturing fine-scale behavior (e.g. singularities or transients), without resorting to a prohibitively large number of variables. This can be done more effectively with a multi-scale method, such as the Hierarchical Basis (HB) method. However, the HB FEM generally yields a multi-resolution stiffness matrix that is coupled across scales. We propose a powerful generalization of the Hierarchical Basis: a second-generation wavelet basis, spanning a Lagrangian finite element space of any given polynomial order.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Civil and Environmental Engineering, 2005.
 
Includes bibliographical references (p. 139-142).Unlike first-generation wavelets, second-generation wavelets can be constructed on any multi-dimensional unstructured mesh. Instead of limiting ourselves to the choice of primitive wavelets, effectively HB detail functions, we can tailor the wavelets to gain additional qualities. In particular, we propose to customize our wavelets to the problem's operator. For any given linear elliptic second-order PDE, and within a Lagrangian FE space of any given order, we can construct a basis of compactly supported wavelets that are orthogonal to the coarser basis functions with respect to the weak form of the PDE. We expose the connection between the wavelet's vanishing moment properties and the requirements for operator-orthogonality in multiple dimensions. We give examples in which we successfully eliminate all scale-coupling in the problem's multi-resolution stiffness matrix. Consequently, details can be added locally to a coarser solution without having to re-compute the coarser solution.
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/28939
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.