Show simple item record

dc.contributor.advisorDonald M. Anderson.en_US
dc.contributor.authorSengco, Mario Rhuelen_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.date.accessioned2005-09-27T20:18:29Z
dc.date.available2005-09-27T20:18:29Z
dc.date.copyright2001en_US
dc.date.issued2001en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/29050
dc.descriptionThesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Biology, and the Woods Hole Oceanographic Institution), 2001.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractIn recent years, the use of clay minerals has emerged as one of the most promising strategies for directly controlling harmful algal blooms (HABs). Its principle is based on the mutual aggregation of algal cells and mineral particles, leading to the formation of large flocs that rapidly settle to the ocean floor. This work investigated the effectiveness of various domestic clays against a number of bloom-forming species from the United States. Twenty-five clays were tested against the dinoflagellate, Karenia brevis (formerly Gymnodinium breve), and the chrysophyte, Aureococcus anophagefferens. In general, the highest removal efficiencies (RE>90% at 0.25 g l-1 of clay) against K brevis were found using montmorillonite, bentonite and phosphatic clays (i.e. a product of phosphate mining containing large amounts of montmorillonite). The RE of phosphatic clays remained high (>80%) even at 0.03 g l-1. Kaolinite and zeolite were mostly ineffective against K brevis. Removal with clay exceeded those for alum, polyaluminum chloride (PAC) and several other polymeric flocculants by a factor of two. However, the combination of phosphatic clay and PAC (at 5 mg l-1) decreased the amount of clay needed to maintain 80% RE by one order of magnitude. Cell viability and recovery remained high when clay loading stayed below 0.03 g l-1 with or without resuspension of the sediment. However, cell mortality approached 100% with 0.50 g l-1 even with daily resuspension. Between 0.10 and 0.25 g l-1, K brevis survival and recovery depended on the interplay of clay loading, the frequency of resuspension, and duration of contact prior to the first resuspension event.en_US
dc.description.abstract(cont.) For A. anophagefferens, the RE did not exceed 40% for any clay at 0.25 g l-1 even in combination with coagulants and flocculants. The highest removal was achieved by thoroughly mixing the clay slurry (e.g. phosphatic clay) into the cell culture. The RE by phosphatic clay varied significantly in a survey consisting of 17 different species from five algal classes. Moreover, the removal trends varied substantially with increasing cell concentration. For example, cell removal increased with increasing clay loading and cell concentration for K. brevis. However, RE dropped below 70% when cell concentration was <1000 cell ml-1 for clay loadings up to 0.50 g l-1. This suggested that a critical number of organisms should be present for clays to remain effective. Similarly, enhanced removal with increasing cell concentration was also found in Akashiwo sanguinea (formerly Gymnodinium sanguineum), Heterosigma akashiwo and Heterocapsa triquetra. In the six remaining species, RE initially increased then decreased, or RE remained constant as more cells were treated. The removal pattern among the species at comparable cell numbers did not correlate with the cross-sectional area (R2=0.23), swimming speed (R2=0.04), or a type of cell covering (i.e. theca, silica frustule) ...en_US
dc.description.statementofresponsibilityby Mario Rhuel Sengco.en_US
dc.format.extent237 leavesen_US
dc.format.extent13065190 bytes
dc.format.extent13064948 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectBiology.en_US
dc.subjectJoint Program in Oceanography.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.titleThe aggregation of clay minerals and marine microalgal cells : physicochemical theory and implications for controlling harmful algal bloomsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentJoint Program in Oceanographyen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Ocean Engineering
dc.identifier.oclc50047983en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record