MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Description of a turbofan engine product development process

Author(s)
Hague, Douglas C. (Douglas Charles), 1967-
Thumbnail
DownloadFull printable version (7.860Mb)
Other Contributors
System Design and Management Program.
Advisor
Steven D. Eppinger.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This research explores what requirements are necessary for the development of a turbofan engine and how they evolve through the product development cycle. This work utilizes a parameter-based design structure matrix (DSM) to define the interfaces and interdependencies present in a large commercial aircraft propulsion system. The DSM was developed from the system level to the module level allowing one to examine the assumptions made throughout the entire life cycle of the product. The work utilizes the system-level DSM to show the similarities between the turbofan engine product development process (PDP) and the software spiral product development process. This work examines the parameter-based DSM in each of the design phases and attempts to understand the assumptions made in each phase and how the assumptions change as the product proceeds through the development cycle. By examination of the DSM, it was found that program goals and requirements lead to an initial set of design parameters. These design parameters are then iterated until a satisfactory product defamation is developed. Each stage concludes with the integration and testing of that stages work. In all stages risk management occurs and with the necessary revision of the program plan for subsequent stages (not in the system-level DSM). The work shows that the PDP for a turbofan engine can be viewed as a spiral process. The thesis then suggests that, in general, the current industry practices for the development of complex physical systems have similarity to the spiral framework for development of software.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, System Design & Management Program, 2001.
 
Includes bibliographical references (p. 123-125).
 
Date issued
2001
URI
http://hdl.handle.net/1721.1/29164
Department
System Design and Management Program.
Publisher
Massachusetts Institute of Technology
Keywords
System Design and Management Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.