MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning from partially labeled data

Author(s)
Szummer, Marcin Olof
Thumbnail
DownloadFull printable version (3.969Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Tommi S. Jaakkola, Tomaso A. Poggio and Leslie P. Kaelbling.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Classification with partially labeled data involves learning from a few labeled examples as well as a large number of unlabeled examples, and represents a blend of supervised and unsupervised learning. Unlabeled examples provide information about the input domain distribution, but only the labeled examples indicate the actual classification task. The key question is how to improve classification accuracy by linking aspects of the input distribution P(x) to the conditional output distribution P(yx ) of the classifier. This thesis presents three approaches to the problem, starting with a kernel classifier that can be interpreted as a discriminative kernel density estimator and is trained via the EM algorithm or via margin-based criteria. Secondly, we employ a Markov random walk representation that exploits clusters and low-dimensional structure in the data in a robust and probabilistic manner. Thirdly, we introduce information regularization, a non-parametric technique based on minimizing information about labels over regions covering the domain. Information regularization provides a direct and principled way of linking P(x) to P(yx), and remains tractable for continuous P(x). The partially labeled problem arises in many applications where it is easy to collect unlabeled examples, but labor-intensive to classify the examples. The thesis demonstrates that the approaches require very few labeled examples for high classification accuracy on text and image-classification tasks.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.
 
Includes bibliographical references (p. 75-81).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/29273
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.