MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Propositional proof systems : efficiency and automatizability

Author(s)
Alekhnovitch, Mikhail, 1978-
Thumbnail
DownloadFull printable version (4.959Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Madhu Sudan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The thesis considers two fundamental questions in propositional proof complexity: lower bounds on the size of the shortest proof and automatizability of propositional proof systems. With respect to the first part, we develop a new paradigm for proving lower bounds in propositional calculus. Our method is based on the purely computational concept of pseudorandom generator. Namely, we call a pseudorandom generator Gn: [0, 1 ] - [0, 1]m hard for a propositional proof system P if P cannot efficiently prove the (properly encoded) statement G (xl,...,xn) f b for any string b [0, 1]m. We consider a variety of "combinatorial" pseudorandom generators inspired by the Nisan-Wigderson generator on the one hand, and by the construction of Tseitin tautologies on the other. We prove that under certain circumstances these generators are hard for such proof systems as Resolution, Polynomial Calculus and Polynomial Calculus with Resolution (PCR). As to the second part, we prove that the problem of approximating the size of the shortest proof within factor 2log1-o(1) is NP-hard. This result is very robust in that it holds for almost all natural proof systems, including: Frege systems, extended Frege systems, resolution, Horn resolution, the sequent calculus, the cut-free sequent calculus, as well as the polynomial calculus. We introduce the Monotone Minimum (Circuit) Satisfying Assignment problem and reduce it to the problem of approximating the length of proofs. Finally, we show that neither Resolution nor tree-like Resolution is automatizable unless the class W[P] from the hierarchy of parameterized problems is fixed-parameter tractable by randomized algorithms with one-sided error.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2003.
 
Includes bibliographical references (p. 135-143).
 
Date issued
2003
URI
http://hdl.handle.net/1721.1/29344
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.