MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploring proton structure using lattice QCD

Author(s)
Renner, Dru Bryant, 1977-
Thumbnail
DownloadFull printable version (6.682Mb)
Alternative title
Exploring proton structure using lattice quantum chromodynamics
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
John W. Negele.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We calculate moments of the generalized parton distributions of the nucleon using lattice QCD. The generalized parton distributions determine the angular momentum decomposition of the nucleon and the transverse distributions of partons within the nucleon. Additionally, the generalized parton distributions reduce to the elastic form factors and ordinary parton distributions in particular kinematic limits. Thus by calculating moments of the generalized parton distributions in lattice QCD we can explore many facets of the structure of the nucleon. In this effort, we have developed the building block method to determine all the lattice correlation functions which con- tribute to the off forward matrix elements of the twist two operators. These matrix elements determine the generalized form factors of the nucleon which in turn give the moments of the generalized parton distributions. Thus we use our building block method to calculate all the matrix elements of the lowest twist two operators. Fur- thermore, we use our method to construct an overdetermined set of matrix elements allowing a more accurate calculation of the generalized form factors.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2004.
 
Includes bibliographical references (leaves 219-222).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/29448
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.