MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Research into building vibrations

Author(s)
Floresca, Diane Lee Bosuego, 1979-
Thumbnail
DownloadFull printable version (3.493Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Jerome J. Connor.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Underground and surface arteries for vehicle or railway traffic can create vibrations that travel to nearby buildings. These vibrations can cause structural damage or human discomfort. Displacement time histories collected from buildings abutting the central surface artery were used to drive mathematical models so that asphaltic and polymeric bearings could be studied as possible passive mitigators of such vibrations. Neither material attenuated vibrations to below threshold levels for human annoyance, but they could dampen levels to resist structural damage if enough material was used to bring the apparent natural frequency away from the range characteristic of traffic vibration. In addition, for resonant cases, the materials did not create enough damping force to counter the inertia of heavy structures, because the materials were too stiff and the displacements and velocities too small. For new construction, it is suggested that these vibrations should be prevented from entering the foundation area by surrounding the foundation with a concrete wall or absorbent foam blocks. For retrofits, polymeric or asphaltic pads could be used and would be relatively easy to install.
Description
Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2003.
 
Includes bibliographical references (leaf 63).
 
Date issued
2003
URI
http://hdl.handle.net/1721.1/29550
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.