MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Civil and Environmental Engineering
  • Civil and Environmental Engineering - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Civil and Environmental Engineering
  • Civil and Environmental Engineering - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of soil penetrometer using Eulerian finite element method

Author(s)
Hu, Shuang, 1976-
Thumbnail
DownloadFull printable version (26.05Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Andrew J. Whittle.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis investigates the use of an Eulerian Finite Element (EFE) method for modeling penetration in soils. The formulation decouples material and nodal points displacements such that soil flows through a fixed finite element mesh. This approach eliminates problems of mesh distortion associated with conventional Lagrangian formulations but requires special procedures to convect the soil constitutive law and prevent numerical diffusion. The current analyses use the program DiekA, developed at the University of Twente in the Netherlands. Detailed calculations have been performed to investigate the effects of elements size and load/time step size on the stability and accuracy of the numerical simulations. Computed results for undrained penetration in homogeneous clays are similar to prior predictions from approximate steady state formulations such as the Strain Path Method. Further calculations for two-layer systems illustrate the potential of the Eulerian formulation to handle realistic layered soil profiles. A more limited study confirms the complexity of drained penetration in sands, where the predicted tip resistance is affected by soil friction and dilation angles, in situ stresses, and moduli. Further study is needed to establish the role of interface friction and lateral earth pressure. The results in the thesis present a first step towards implementation of more advanced effective stress soil models in EFE analyses of penetration in layered soils.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2003.
 
Includes bibliographical references (leaves 171-176).
 
Date issued
2003
URI
http://hdl.handle.net/1721.1/29575
Department
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Civil and Environmental Engineering - Master's degree
  • Civil and Environmental Engineering - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.