Show simple item record

dc.contributor.advisorJacqueline A. Lees.en_US
dc.contributor.authorCloud, Jennifer Ellen, 1976-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Biology.en_US
dc.date.accessioned2006-03-24T16:05:36Z
dc.date.available2006-03-24T16:05:36Z
dc.date.copyright2003en_US
dc.date.issued2003en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/29593
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2003.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractThe E2F transcription factors are critical downstream targets of the retinoblastoma protein (pRB) pathway. A component of the pRB pathway is mutated in most human tumors resulting in deregulation of cell cycle control through the inappropriate release of E2Fs. E2F1, E2F2, and E2F3 are members of the "activating E2F" subfamily that is important for the transcriptional activation of target genes involved in DNA replication and cell cycle control. These E2F family members are essential for cellular proliferation in vitro. This study analyzes the role of the activating E2Fs in vivo using mutant mouse models. It demonstrates that E2F3 is essential for viability in a strain dependent manner. E2f3 animals die at three distinct time points from cardiac etiologies. The embryonic and neonatal lethality of these animals is consistent with proliferation defects in the myocardium that result in hypoplastic heart walls and septa. E2f animals that survive the perinatal period eventually die from highly penetrant, late-onset congestive heart failure. This is the first evidence that proliferation regulators have an important role in adult heart failure. In addition, this study examines the relative roles of E2F1 and E2F3 in vivo. It shows that E2F1 and E2F3 have functional overlap during mouse development as well as in the maintenance of a number of adult tissues. However, E2F1 appears to have a distinct function as a tumor suppressor gene. Importantly, E2F1 and E2F3 both contribute to normal cardiac function. Furthermore, mutation of the gene for the pRB protein that negatively regulates the activating E2Fs can rescue the heart failure in the E2f3 animals. These data argue strongly that proper regulation of proliferation is critical for adult cardiac function.en_US
dc.description.statementofresponsibilityby Jennifer Ellen Cloud.en_US
dc.format.extent167 leavesen_US
dc.format.extent7461124 bytes
dc.format.extent7460932 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectBiology.en_US
dc.titleGenetic and molecular analysis of the E2F transcription factor family in mouse development, tumorigenesis, and cardiac functionen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biology
dc.identifier.oclc52915884en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record