MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Langrangian decomposition approach to weakly coupled dynamic optimization problems and its applications

Author(s)
Hawkins, Jeffrey Thomas, 1977-
Thumbnail
DownloadFull printable version (5.946Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Dimitris Bertsimas.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We present a Lagrangian based approach to decoupling weakly coupled dynamic optimization problems for both finite and infinite horizon problems. The main contributions of this dissertation are: (i) We develop methods for obtaining bounds on the optimal cost based on solving low dimensional dynamic programs; (ii) We utilize the resulting low dimensional dynamic programs and combine them using integer programming methods to find feasible policies for the overall problem; (iii) To illustrate the power of our methods we apply them to a large collection of dynamic optimization problems: multiarmed bandits, restless bandits, queueing networks, serial supply chains, linear control problems and on-line auctions, all with promising results. In particular, the resulting policies appear to be near optimal. (iv) We provide an indepth analysis of several aspects of on-line auctions, both from a buyer's and a seller's perspective. Specifically, for buyers we construct a model of on-line auctions using publicly available data and develop an algorithm for optimally bidding in multiple simultaneous auctions. For sellers we construct a model of on-line auctions using publicly available data and demonstrate how a seller can increase the final selling price using dynamic programming.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2003.
 
Includes bibliographical references (p. 187-192).
 
Date issued
2003
URI
http://hdl.handle.net/1721.1/29599
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.