Show simple item record

dc.contributor.advisorAlan V. Oppenheim.en_US
dc.contributor.authorRussell, Andrew Ian, 1975-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2006-03-24T16:23:08Z
dc.date.available2006-03-24T16:23:08Z
dc.date.copyright2002en_US
dc.date.issued2002en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/29761
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.en_US
dc.descriptionIncludes bibliographical references (p. 107-110).en_US
dc.description.abstractIn this thesis, we consider three main resampling problems. The first is the sampling rate conversion problem in which the input and output grids are both regularly spaced. It is known that the output signal is obtained by applying a time-varying filter to the input signal. The existing methods for finding the coefficients of this filter inherently tradeoff computational and memory requirements. Instead, we present a recursive scheme for which the computational and memory requirements are both low. In the second problem which we consider, we are given the instantaneous samples of a continuous-time (CT) signal taken on an irregular grid from which we wish to obtain samples on a regular grid. This is referred to as the nonuniform sampling problem. We present a noniterative algorithm for solving this problem, which, in contrast to the known iterative algorithms, can easily be implemented in real time. We show that each output point may be calculated by using only a finite number of input points, with an error which falls exponentially in the number of points used. Finally we look at the nonuniform lowpass reconstruction problem. In this case, we are given regular samples of a CT signal from which we wish to obtain amplitudes for a sequence of irregularly spaced impulses. These amplitudes are chosen so that the original CT signal may be recovered by lowpass filtering this sequence of impulses. We present a general solution which exhibits the same exponential localization obtained for the nonuniform sampling problem. We also consider a special case in which the irregular grid is obtained by deleting a single point from an otherwise regular grid. We referen_US
dc.description.abstract(cont.) to this as the missing pixel problem, since it may be used to model cases in which a single defective element is present in a regularly spaced array such as the pixel arrays used in flat-panel video displays. We present an optimal solution which minimizes the energy of the reconstruction error, subject to the constraint that only a given number of pixels may be adjusted.en_US
dc.description.statementofresponsibilityby Andrew I. Russell.en_US
dc.format.extent110 p.en_US
dc.format.extent4753790 bytes
dc.format.extent4753599 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleRegular and irregular signal resamplingen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc54666109en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record