MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptive format conversion information as enhancement data for scalable video coding

Author(s)
Wan, Wade K. (Wade Keith), 1973-
Thumbnail
DownloadFull printable version (15.87Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Jae S. Lim.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Scalable coding techniques can be used to efficiently provide multicast video service and involve transmitting a single independently coded base layer and one or more dependently coded enhancement layers. Clients can decode the base layer bitstream and none, some or all of the enhancement layer bitstreams to obtain video quality commensurate with their available resources. In many scalable coding algorithms, residual coding information is the only type of data that is coded in the enhancement layers. However, since the transmitter has access to the original sequence, it can adaptively select different format conversion methods for different regions in an intelligent manner. This adaptive format conversion information can then be transmitted as enhancement data to assist processing at the decoder. The use of adaptive format conversion has not been studied in detail and this thesis examines when and how it can be used for scalable video compression. A new scalable codec is developed in this thesis that can utilize adaptive format conversion information and/or residual coding information as enhancement data. This codec was used in various simulations to investigate different aspects of adaptive format conversion such as the effect of the base layer, a comparison of adaptive format conversion and residual coding, and the use of both adaptive format conversion and residual coding.
 
(cont.) The experimental results show adaptive format conversion can provide video scalability at low enhancement bitrates not possible with residual coding and also assist residual coding at higher enhancement layer bitrates. This thesis also discusses the application of adaptive format conversion to the migration path for digital television. Adaptive format conversion is well-suited to the unique problems of the migration path and can provide initial video scalability as well as assist a future migration path.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.
 
Includes bibliographical references (p. 143-145).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/29903
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.