Show simple item record

dc.contributor.advisorDaniel G. Nocera.en_US
dc.contributor.authorChang, Christopher J., 1974-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemistry.en_US
dc.date.accessioned2006-03-24T18:03:49Z
dc.date.available2006-03-24T18:03:49Z
dc.date.copyright2002en_US
dc.date.issued2002en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/29928
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2002.en_US
dc.descriptionVita.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractProton-coupled electron transfer (PCET) is the basic mechanism for bioenergetic conversion. Consummate examples include water oxidation in photosynthesis and oxygen reduction in respiration. Despite the importance of PCET in such catalytic bond-making and bond-breaking reactions, the underlying mechanisms of coupled proton and electron transport in these processes is not well understood. To address mechanistic issues surrounding the role of PCET in catalytic chemical transformations, we have begun characterizing PCET events at a molecular level in a broad spectrum of small-molecule activation reactions for the first time. Two distinct structural scaffolds have been elaborated to study the PCET chemistry of 0-0 bond forming and cleaving reactions. The first consists of platforms containing two redox sites linked face-to-face by a rigid xanthene (DPX) or dibenzofuran (DPD) spacer - Pacman porphyrins. A comparative structural study demonstrates that DPD has the unprecedented ability to open and close its binding pocket by a vertical distance of over 4 A upon substrate binding, providing the first direct observation of the Pacman effect in a single cofacial platform. Moreover, efficient oxygen-activation chemistry is preserved when such cofacial motifs exhibit a large range of vertical motion; for example, dicobalt(II) complexes of both DPX and DPD are effective electrocatalysts for the direct four- electron reduction of oxygen to water despite their ca. 4 A difference in metal-metal distances.en_US
dc.description.abstract(cont.) The second scaffold consists of acid-base and redox functionalities affixed to a xanthene (HPX) or dibenzofuran (HPD) scaffold - Hangman porphyrins. HPX selectively encapsulates water between its acid-base and redox sites by hydrogen bonding, affording a minimalist model for the cytochrome P450 heme water channel assemblies. Comparative reactivity studies for the catalase-like disproportionation of hydrogen peroxide and the epoxidation of olefins by HPX and HPD platforms bearing acid and ester pendants reveal that the introduction of a proton-transfer network properly oriented to a redox-active platform can orchestrate catalytic 0-0 bond activation. For the catalase and epoxidation reaction types, a marked reactivity enhancement is observed for the xanthene-bridged platform with a pendant carboxylic acid, establishing that this approach can yield superior catalysts to analogs that do not control both proton and electron currencies.en_US
dc.description.statementofresponsibilityby Christopher J. Chang.en_US
dc.format.extent2 v. (343 leaves )en_US
dc.format.extent15717109 bytes
dc.format.extent15716907 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectChemistry.en_US
dc.titleSmall-molecule activation chemistry catalyzed by proton-coupled electron transferen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc51955208en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record