MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of chemistry and morphology of polymer filtration membranes

Author(s)
Akthakul, Ariya, 1973-
Thumbnail
DownloadFull printable version (10.24Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Anne M. Mayes.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
To improve membrane materials in water filtration, which currently display broad pore size distribution, hydrophobic chemistry, and fouling behavior, a novel design of chemistry and morphology of membranes is employed. First, through fundamental studies of morphological formation both in bulk by lattice-Boltzmann (LB) simulation methods and at the surface by observation of electron micrographs, it is illustrated that phase separation via spinodal decomposition is responsible for pore development. This understanding suggests the possibility to tailor a uniform and interconnected porous membrane by using the spinodal structure. Considering that the control of spinodal porous structure on a nanoscale can be challenging, an alternative approach to achieve a similar interconnected morphology by utilizing the self-assembled structure of a graft copolymer is presented. This graft copolymer permits not only the design of morphology through its architecture, but also the design of chemistrythrough its chemical components. Here, a comb-type structure of a copolymer is applied; this structure contains a hydrophobic poly(vinylidene fluoride) (PVDF) backbone for structural integrity and hydrophilic poly(ethylene oxide) (PEO) side chains for preferential water transport. A membrane with the microphase-separated structure of this copolymer at the surface is then utilized to clean oily water wastes where the membrane rejects more than 99.9% of the oil without fouling. This membrane can also perform molecular sieving, serve as a chromatography instrument, and isolate a product of a designated size distribution on a nanoscale via its tunability of channel sizes, as demonstrated in the uniform size dispersity of gold nanoparticles. Moreover, gold nanoparticles are introduced as a probe to study sieving characteristics of the membrane by tailoring their size and chemistry. The success in regulating transport across the membrane through the self-assembled platform leads to a new family of filtration membranes that could offer much broader applications for nanoscale separation.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2003.
 
Vita.
 
Includes bibliographical references.
 
Date issued
2003
URI
http://hdl.handle.net/1721.1/29966
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.