Show simple item record

dc.contributor.advisorSamuel M. Allen.en_US
dc.contributor.authorGuo, Honglin, 1965-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Materials Science and Engineering.en_US
dc.date.accessioned2006-03-24T18:08:34Z
dc.date.available2006-03-24T18:08:34Z
dc.date.copyright1998en_US
dc.date.issued1998en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/29979
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1998.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractThree-dimensional printing (3DP) is a state-of-the-art manufacturing technology, One of its many important applications is to fabricate the metal tooling for plastic injection molding. In order to achieve a fully dense 3DP metal tool, the current 3DP process involves five steps: printing, debinding, sintering, liquid metal infiltration and heat treatment. Due to the infiltration requirement, all 3DP tools made to date are composed of a high-strength skeleton material and a low-strength infiltrant. The search for a hardenable/hard 3DP system is the mission of this dissertation. Five major accomplishments can be found in the dissertation: (1) development of the 420/bronze material system for 3DP tooling; (2) development and optimization of the post-processing of the system; (3) development of a computer model simulating the interaction of powder/liquid infiltrant; (4) computer-aided material system design and (5) methodology exploration of the material system development.The 420/bronze material system with a minimum reaction was developed experimentally, by screening 30 potential material systems. Compared to the initial 3DP and reactive system, the system strength was significantly improved. More than 50 3DP injection tools have been fabricated using this material system. A 3DP tool made of the 420/bronze system has been used to mold more than one hundred thousand plastic products without major repairing of the tool. It was the first time that an injection mold was made of 60 vol% 420 and 40 vol% bronze. The system was a milestone in the 3DP material system development. In addition, the post-processing of the system was well established and defined in terms of the procedures and parameters. Four problems associated with the processing were identified. The porosity, erosion, and reaction have been minimized. The dimensional accuracy has been substantially improved. The dimensional error is approaching to an average of ±0.1% in linear dimension. A 3DP tool made of the 420/bronze has achieved the second best in dimensional accuracy among many current rapid prototyping technologies. The procedures and parameters that have been developed serve as a good benchmark for future 3DP system. A thermodynamic database for steels, refractory metals and copper-based infiltrants for use with Thermo-Calc was developed with assessments of fifteen binary systems.en_US
dc.description.abstract(cont.) Among the fifteen assessments, five were modified from published data; and ten were self-assessed. These data were combined with those in a commercial database to make a customized user database for 3DP materials system design/assessment. The user database has been successfully used for the simulation of a multi-component infiltration reaction. The computer predictions have excellent agreement with the experimental results. The model can be used for the development of a wide range of infiltrated composite materials. The most straightforward approach for materials... selection using this database is to search for a powder/infiltrant combination in which there is very limited tendency for interdiffusion of alloying elements between the powder and infiltrant alloys. Thermodynamic calculations that reveal solubilities of infiltrant elements in the powder alloy, and vice versa, provide an excellent predictive tool for minimizing powder/infiltrant reactions ...en_US
dc.description.statementofresponsibilityby Honglin Guo.en_US
dc.format.extent174 leavesen_US
dc.format.extent8524668 bytes
dc.format.extent8524474 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectMaterials Science and Engineering.en_US
dc.titleAlloy design or three-dimensional printing of hardenable tool materialsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc54769230en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record