Show simple item record

dc.contributor.advisorShing-Tung Yau.en_US
dc.contributor.authorLuo, Wei, 1975-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mathematics.en_US
dc.date.accessioned2006-03-24T18:09:03Z
dc.date.available2006-03-24T18:09:03Z
dc.date.copyright2003en_US
dc.date.issued2003en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/29984
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2003.en_US
dc.descriptionIncludes bibliographical references (p. 80).en_US
dc.description.abstractIn this thesis, I study pseudo-holomorphic curves in symplectisation of the unit cotangent bundle of a Riemann surface of genus greater than 1. The contact form and compatible almost complex structure are both constructed from a metric on the Riemann surface whose curvature is constant -1. I related the pseudo-holomorphic curve equation to harmonic map equations and a Cauchy-Riemann type equation perturbed with quadratic terms for functions on a punctured Riemann sphere. Then I prove a Theorem that gives one to one correspondence between solutions to the perturbed Cauchy-Riemann equation and finite energy pseudo-holomorphic curves.en_US
dc.description.statementofresponsibilityby Wei Luo.en_US
dc.format.extent80 p.en_US
dc.format.extent2580726 bytes
dc.format.extent2580534 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectMathematics.en_US
dc.titleOn contact homology of the unit cotangent bundle of a Riemann surface with genus greater than oneen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.oclc54790531en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record