Show simple item record

dc.contributor.advisorPaula T. Hammond.en_US
dc.contributor.authorDeLongchamp, Dean M. (Dean Michael), 1975-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemical Engineering.en_US
dc.date.accessioned2006-03-24T18:10:07Z
dc.date.available2006-03-24T18:10:07Z
dc.date.copyright2003en_US
dc.date.issued2003en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/29995
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2003.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractThis work applies the processing technique of layer-by-layer (LBL) assembly to the creation and development of new electrochemically active materials. Elements of the thin-film electrochromic cell were chosen as a particular focus for LBL fabrication. Layer-by-layer assembly is the ideal processing tool to tailor the electrochemical systems within electrochromic cells because modulating processing conditions can greatly impact the nanoscale composition and morphology of the resultant films. For the first time, this control was used to: 1) intelligently design electrochromic LBL assembled composite films that facilitated ion motion for faster switching and exhibited enhanced or shifted coloration, 2) combine multiple electrochromic materials into novel LBL assembled composites with even higher contrast, faster switching, and multiple colored states, and finally 3) develop and optimize several LBL assembled polymer electrolyte films that display high ionic conductivity and sound mechanical integrity. Electrochromic cell elements were chosen not only for their undeveloped commercial potential, but also because they incorporate multifunctional material systems with alternative applications. Studies of LBL fabrication and the operation of electrochromic cells provide insight into intermolecular interactions, internal and external film interfaces, thin film electrochemistry, and charged species mobility in polymer solids. First investigated was the capability of LBL assembly to alter the properties of electrochromic films by varying molecular blending.en_US
dc.description.abstract(cont.) The electrochromophores for this investigation were appropriated from all corners of the materials spectrum, including discrete electrochromic polymers, conjugated polymers, soft colloidal suspensions, and inorganic particle dispersions. In each system, the influence of assembly conditions and film composition was elucidated; in particular systems the hydrophobicity, acidity, and morphology of the films were found to impact the electrochemistry and optical character of the films, providing a means to modulate these properties by directing LBL assembly design choices. Because of the high uniformity and thickness control allowed by LBL assembly, the contrast and switching performance of all LBL assembled electrochromic films were in general superior to those of films containing the same electrochromophores fabricated by other methods. One particularly promising system involved novel LBL assembled films containing the same electrochromophores fabricated by other methods. One particularly promising system involved novel LBL assembled films containing electrochromic metal hexacyanoferrate nanocrystals of the Prussian blue family. These films displayed fast and deep coloration; synthetic nanocrystal variation extended absorbance over a broad spectral range so that these inorganic/polymer composite films could potentially be considered as elements in a full-color switchable CMYK display. The power of the LBL assembly technique was leveraged further with the successful fabrication of "dual electrochrome" electrodes ...en_US
dc.description.statementofresponsibilityby Dean M. DeLongchamp.en_US
dc.format.extent246 p.en_US
dc.format.extent18702494 bytes
dc.format.extent18734884 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectChemical Engineering.en_US
dc.titleEngineering the electrochromism and ion conduction of layer-by-layer assembled filmsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.identifier.oclc54910291en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record