MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical upper and lower bound limit analysis for braced excavations

Author(s)
Degwitz, Fernando G. (Fernando Guillermo), 1980-
Thumbnail
DownloadFull printable version (5.508Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Andrew J. Whittle.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis reviews limit theorems and their applications for stability problems in geotechnical engineering. Rigorous numerical solutions of limit analyses can be obtained through finite element discretization of the soil mass and formulation of the limit theorems within a linear programming framework. The current research uses a formulation proposed by Sloan et al. (1988) and extended in a recent Ph.D. thesis by Ukritchon (1998) to include soil-structure interactions. The thesis details the input and output required for numerical limit analysis and presents an example application for the stability of a broad excavation for the MUNI Metro Turnback project in San Francisco. This well documented case study involves a 13 M deep excavation within a deep deposit of May Mud that was supported by an SPTC wall with three levels of cross-lot bracing. The numerical limit analyses calculate factors of safety, FS = 1.03 - 1.36, against basal instability. The factor of safety used in the original design (FS = 1.2) is contained in this range. The results illustrate that numerical limit analysis offers a practical alternative to limit equilibrium methods in evaluating the stability of braced excavations.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2004.
 
Includes bibliographical references (leaves62-63).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/30131
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.