MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Moduli of twisted sheaves and generalized Azumaya algebras

Author(s)
Lieblich, Max, 1978-
Thumbnail
DownloadFull printable version (8.387Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
A. J. de Jong.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We construct and describe compactified moduli stacks of Azumaya algebras on a smooth projective morphism X [right arrow] S. These stacks are the algebro-geometric version of the (suitably compactified) stacks of principal PGLn-bundles and they also have strong connections to arithmetic. A geometric approach to the problem leads one to study stacks of (semistable) twisted sheaves. We show that these stacks are very similar to the stacks of semistable sheaves. This gives a way of understanding the structure of the stack of principal PGLn-bundles and its coarse moduli space in terms of fairly well-understood spaces. In particular, when X [right arrow] S is a smooth projective curve or surface over an algebraically closed field, our method yields concrete theorems about the structure of these stacks (at least as certain natural invariants are allowed to increase without bound). On the arithmetic side, we use the geometry and rationality properties of these moduli spaces to study a classical question about the Brauer group of a function field K, known as the "period-index problem": for which classes o in Br(K) of order n does there exist a division algebra D of rank n2 with [D] = [alpha]? We give an answer to this question when K is the function field of a curve or surface over an algebraically closed, finite, or local field and when c is an unramified Brauer class of order prime to the characteristic of K. In the general case, we relate the unramified period-index problem to rationality questions on Galois twists of moduli spaces of semistable sheaves.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2004.
 
Includes bibliographical references (p. 151-156).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/30145
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.