Show simple item record

dc.contributor.advisorClifton G. Fonstad, Jr.en_US
dc.contributor.authorChoy, Henry Kwong Hin, 1974-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2006-03-24T18:24:38Z
dc.date.available2006-03-24T18:24:38Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/30155
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.en_US
dc.descriptionIncludes bibliographical references (p. 161-174).en_US
dc.description.abstractFor a long time, there has been a desire to extend the emission wavelength of GaAs-based quantum well lasers, with the aim of eventually replacing InP with GaAs as the substrate of choice for communication applications. Using dilute nitride GaInAsN QWs or InAs quantum dots, emission wavelengths have successfully been extended to 1.3 m, but significant difficulties have been met going beyond 1.3 m. In this thesis, we present an alternative approach, namely, the molecular beam epitaxy (MBE) growth of quantum wells on top of indium gallium arsenic compositionally graded buffers, with the indium composition in the buffers linearly graded from 0% to 15% or 20%. We observed that one can obtain strong quantum emission on top of such graded buffers only under a very restricted range of growth conditions, detailed in this thesis, which are not compatible with the subsequent growth of the aluminum-containing barriers necessary for carrier confinement. Furthermore, upon proper ex-situ annealing, it was able to obtain QW emission as strong as, sometimes even stronger than, that from QWs pseudomorphically grown on GaAs.However, when even slight tensile or compressive strain was added to the QWs, severe degradation occurred, which was likely related with the amount of surface roughness induced by the crosshatches developed during and after the growth of the graded buffers. Temperature dependent photoluminescence was employed as a tool to investigate the relationship between the ex-situ annealing, strain and quantum well photoluminescence. It was found that there was a significant PL decay mechanism between 50K to about 250K for the aluminum containing unannealed quantum well samples. For the unstrained ones, this mechanism could be removed effectively by annealing. However, strain in quantum well was observed to retard this removal. The same observations were made in both the pseudomorphically and metamorphically grown samples, but the metamorphic ones seemed to suffer more from the retardation.Finally, the theoretical modeling of the photoluminescence temperature dependence was reformulated such that physical processes or band diagram features could be related to the measurement results. Only under restricted circumstances, our formulation was found to be identical to the existing, commonly used, description of the photoluminescence temperature dependence.en_US
dc.description.statementofresponsibilityby Henry Kwong-Hin Choy.en_US
dc.format.extent174 p.en_US
dc.format.extent9237891 bytes
dc.format.extent9259671 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleQuantum wells on indium gallium arsenic compositionally graded buffers realized by molecular beam epitaxyen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc60654414en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record