MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Applications of group theory to few-body physics

Author(s)
Chaudhary, Irfan Ullah, 1970-
Thumbnail
DownloadFull printable version (8.214Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Peter L. Hagelstein.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Over the past fifteen years, there have been persistent claims of anomalous nuclear reactions in condensed matter environments. A Unified Model [38] has been proposed to systematically account for most of these anomalies. However, all the work done so far has used simple scalar nuclear Hamiltonians. In this thesis, we develop the tools necessary to use a realistic nuclear Hamiltonian in the Unified Model. A natural way to include a realistic nuclear potential in the Unified Model is via the method of coupled-channel equations. The phenomenological nuclear interaction chosen is the Hamada-Johnston potential [40]. The major portion of the thesis is devoted to deriving the coupled-channel equations with explicit symmetry constraints for the Hamada-Johnston potential. A critical input in this derivation is the calculation of the matrix elements of the various channels. We develop a systematic method, based on group theory, for calculating matrix elements of few-body correlated spatial wavefunctions. This method can, in some sense, be considered a generalization of Racah's viewpoint [17] of calculating shell-model matrix elements. Towards the end, two related, but somewhat different topics are explored. Firstly, a simple phonon-coupled nuclear reaction, the photodisintegration of the deuteron, is investigated. While no observable results are computed, this work should be considered a first step in calculating the effects of the lattice on nuclear reactions. Secondly, Lie algebra theory is used to understand the coherent decay, from the highest symmetry state in N-level systems, in terms of the usual Dicke [21] algebra.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.
 
Includes bibliographical references (leaves 257-262).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/30157
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.