MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic testing of software with structurally complex inputs

Author(s)
Marinov, Darko, 1976-
Thumbnail
DownloadFull printable version (9.472Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Martin C. Rinard.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Modern software pervasively uses structurally complex data such as linked data structures. The standard approach to generating test suites for such software, manual generation of the inputs in the suite, is tedious and error-prone. This dissertation proposes a new approach for specifying properties of structurally complex test inputs; presents a technique that automates generation of such inputs; describes the Korat tool that implements this technique for Java; and evaluates the effectiveness of Korat in testing a set of data-structure implementations. Our approach allows the developer to describe the properties of valid test inputs using a familiar implementation language such as Java. Specifically, the user provides an imperative predicate--a piece of code that returns a truth value--that returns true if the input satisfies the required property and false otherwise. Korat implements our technique for solving imperative predicates: given a predicate and a bound on the size of the predicate's inputs, Korat automatically generates the bounded-exhaustive test suite that consists of all inputs, within the given bound, that satisfy the property identified by the predicate. To generate these inputs, Korat systematically searches the bounded input space by executing the predicate on the candidate inputs. Korat does this efficiently by pruning the search based on the predicate's executions and by generating only nonisomorphic inputs. Bounded-exhaustive testing is a methodology for testing the code on all inputs within the given small bound.
 
(cont.) Our experiments on a set of ten linked and array- based data structures show that Korat can efficiently generate bounded-exhaustive test suites from imperative predicates even for very large input spaces. Further, these test suites can achieve high statement, branch, and mutation coverage. The use of our technique for generating structurally complex test inputs also enabled testers in industry to detect faults in real, production-quality applications.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.
 
Includes bibliographical references (p. 123-132).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/30161
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.